Stress as a key factor for the Niobe Fritillary (*Argynnis niobe*) in heavy-metal grasslands

Alexander Salz & Thomas Fartmann

A. Salz & T. Fartmann

Motivation

- dramatic decline throughout Central Europe
- habitat preferences are well known for coastal dunes (Salz & Fartmann 2009)
- BUT: Poor knowledge about inland populations

→ Comparison of habitat requirements in heavy-metal grasslands and costal dunes

2

Salz & Fartmann (2009): J. Insect. Conserv. 13: 643-654

Study species

Argynnis niobe

- univoltine
- hibernates as an egg
- larvae hatch in spring
- flight time: June to August
- host plant: Viola spp.

Study area

Heavy-metal grasslands

- high heavy-metal contents in soil
 → physiological stress to plants
 → heavy-metal tolerance as adaptation
- heavy-metal concentrations in soil reduce speed of succession
- Viola calaminaria
 → Host plant

Study area

| 5

Microhabitat: Larvae sites

	Occupied	Random	Р
	(<i>N</i> = 32)	(<i>N</i> = 25)	
Turf height (cm)	12 (4-25)	15 (4-25)	0 ^{NS}
Cover (%)			
Shrub layer	0 (0-35)	0 (0-20)	0 ^{NS}
Herb layer	50 (25-70)	60 (30-80)	- **
Litter	40 (20-90)	50 (5-80)	0 ^{NS}
Moss	7.5 (0-80)	5 (0-80)	0 ^{NS}
Lichen	0 (0-30)	0 (0-15)	0 ^{NS}
Bare ground	0 (0-7.5)	0 (0-5)	0 ^{NS}
V. calaminaria	10 (2-25)	5 (0.5-25)	+**
Maximum daily direct insulation (June)	15 (10-16)	14 (8-16)	0 ^{NS}

Microhabitat: Generalized linear model

(Larvae sites vs. random sites)

Explanatory variables	
Cover of herb layer	_ **
Cover of Viola calaminaria	+ **
Pseudo R ² [Mc Fadden] = 0.22	

Take-home message I

Habitat requirements in heavy-metal grasslands

- (i) Cover of herb layer (-) \rightarrow warm microclimate
- (ii) Host-plant density (+)

Why is stress a key factor for *Argynnis niobe* in heavy-metal grasslands?

- High heavy-metal concentrations in soil keep the vegetation sparse and favour high densities of V. calaminaria
 - \rightarrow high habitat quality

Reference area: Langeoog

Coastal dunes

- Larval habitat: Dune grassland with Viola canina,
 V. tricolor
- Key factors: short-turf grey-dune vegetation (warm microclimate) with *Viola* stands
 Natural disturbance

Salz & Fartmann (2009): J. Insect. Conserv. 13: 643-654

Reference area: Langeoog

Area of potential larval habitats (grey-dune vegetation) on islands in the North Sea between Texel (NL) and the peninsula of Skallingen (DK)

Salz & Fartmann (2009): J. Insect. Conserv. 13: 643-654

Microhabitat: Heavy-metal grasslands vs. coastal dunes

	Stolberg (<i>N</i> = 32)	Langeoog (<i>N</i> = 66)	Р
Turf height (cm)	12 (4-25)	11 (4-30)	0 ^{NS}
Cover (%)			
Shrub layer	0 (0-35)	0 (0-25)	0 ^{NS}
Herb layer	50 (25-70)	35 (10-75)	+ **
Litter	40 (20-90)	15 (0-70)	+ ***
Moss	7.5 (0-80)	62.5 (5-90)	<u> </u>
Lichen	0 (0-30)	0 (0-40)	0 ^{NS}
Bare ground	0 (0-7.5)	0 (0-60)	0 ^{NS}
Host plants	10 (2-25)	5 (1-45)	+ **
Sunshine duration (June)	15 (10-16)	15 (12-16)	0 ^{NS}

Take-home message II

Key factors in heavy-metal grasslands and coastal dunes

	Heavy-metal grasslands	Coastal dunes	
Physiological stress	+	-	
Disturbance	+/-	+/-	
Area of potential	~ 40 ha	> 100 ha	
larval habitats			

→ High host-plant density in heavy-metal grasslands compensates for small area of larval habitats

Thank you for your attention!

