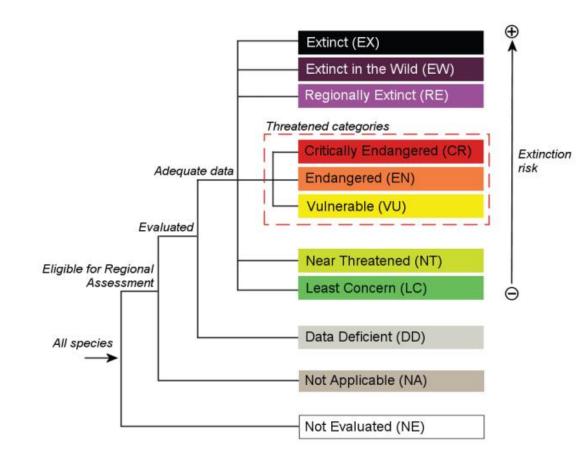
New European Butterfly Red List

Chris van Swaay, Martin Warren, Sam Ellis and many others

Butterfly Conservation Europe



European Red List of Butterflies

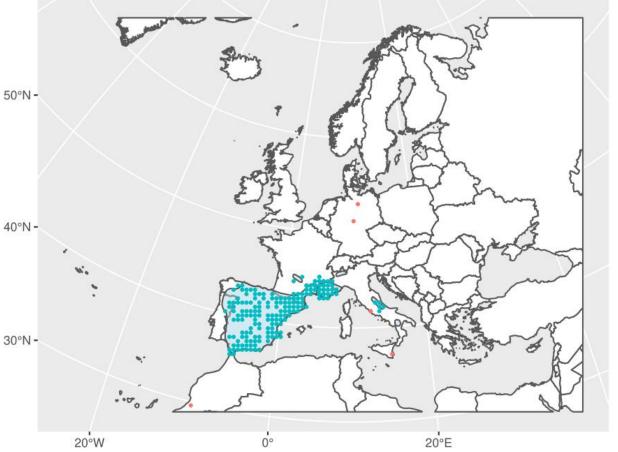
Compiled by Chris van Swaay, Annabelle Cuttelod, Sue Collins, Dirk Maes, Miguel López Munguira, Martina Šašić, Josef Settele, Rudi Verovnik, Theo Verstrael, Martin Warren, Martin Wiemers and Irma Wynhoff

IUCN Red List criteria

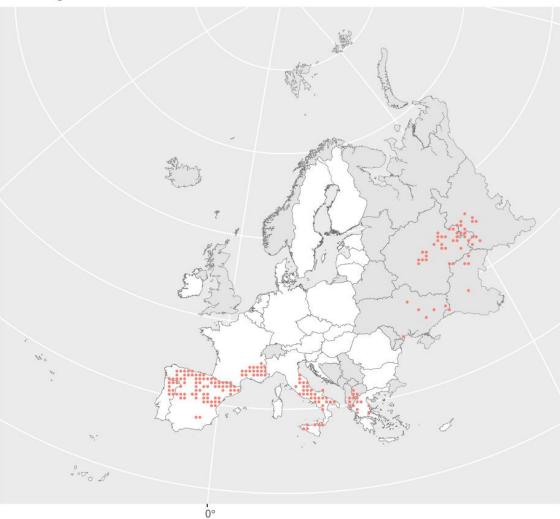
- A. Population size reduction of at least 30% in last 10 years
- B. Small geographic range plus 2 out of 3:
 - a) Severely fragmented or <10 locations
 - b) Continuing decline
 - c) Extreme fluctuations
- C. Small populations size (<10 000 adults) and decline
- D. Very small or restricted population (<1000 adults)
- E. Quantative analysis

IUCN Red List criteria

- Get observations for:
 - AOO (Area of Occupancy): count present 2x2km squares
 - EOO (Extent of Occurrence): convex hull around present distribution
 - Range map (historical distribution)
 - Distribution trend
- Get trends (population and/or distribution)
- For B-criterion: info on fragmentation, number of locations, fluctuations (>10 fold)


Distribution data

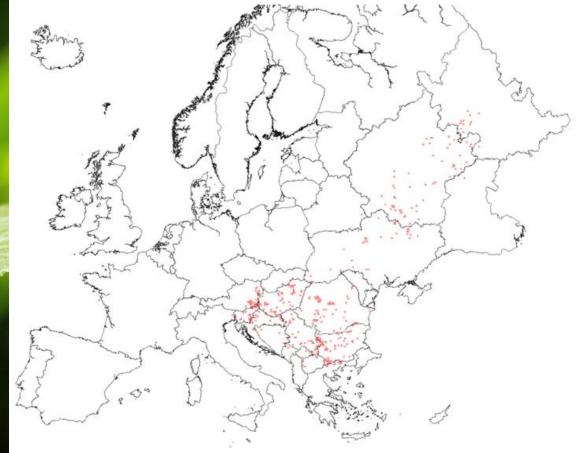
- GBIF
- iNaturalist.org and observation.org → use validated records for checking GBIF data
- Lepidiv (UFZ) and art. 17 distribution maps (EU)
- Validate with 'old' range maps from 2010 Red List
- Check outliers in team with experts (Rudi Verovnik, Martin Wiemers, Patrick Gros, Pieter Vantieghem, Miguel Munguira and others



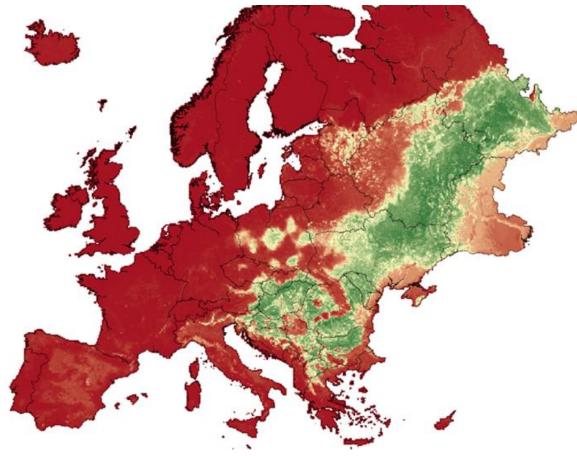
Anthocharis euphenoides 2011-2020

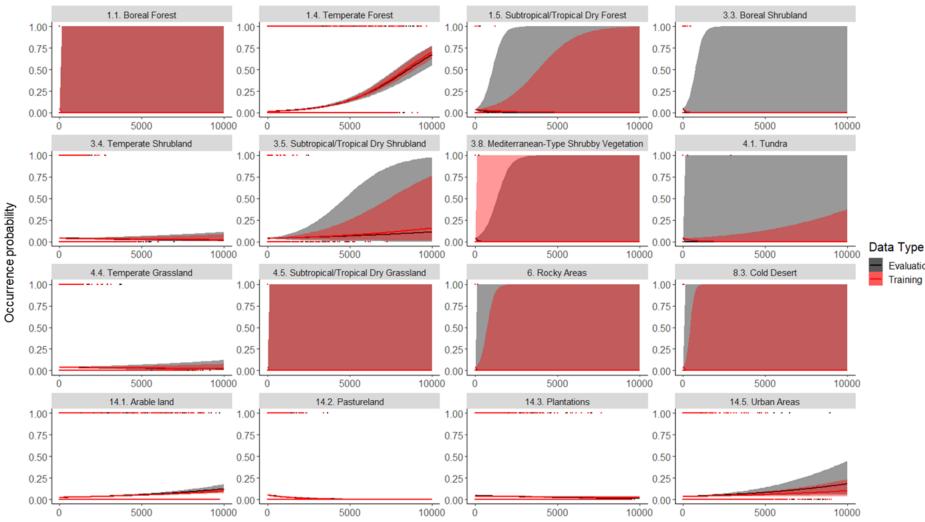
pl • 0 Melanargia russiae

50°N -40°N -30°N -

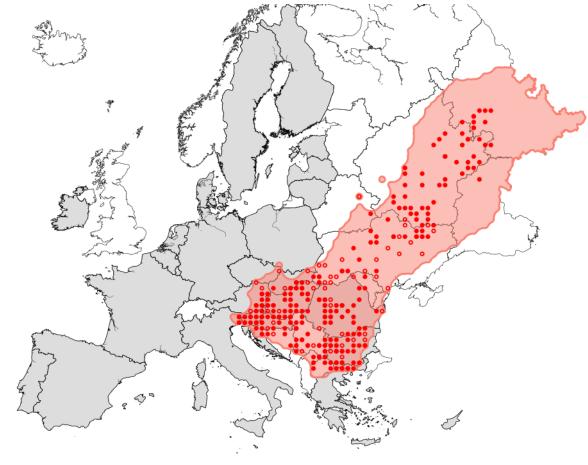

Next step: fill the holes

- Build a Species Distribution Model (SDM) to fill the gaps, especially in Russia
- Input:
 - Distribution data 10x10km:
 - Generate zeroes
 - Environmental data:
 - Four climate variables
 - Altitude
 - IUCN habitat map \rightarrow in output also habitat preference

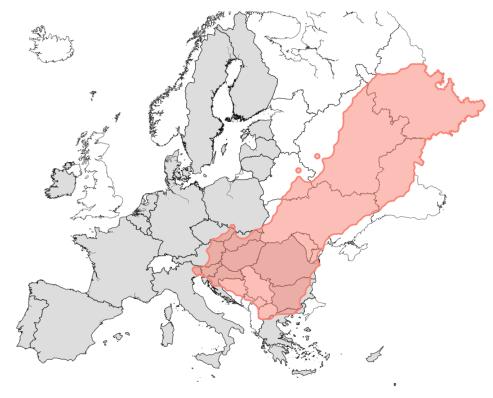




Evaluation Set Training Set

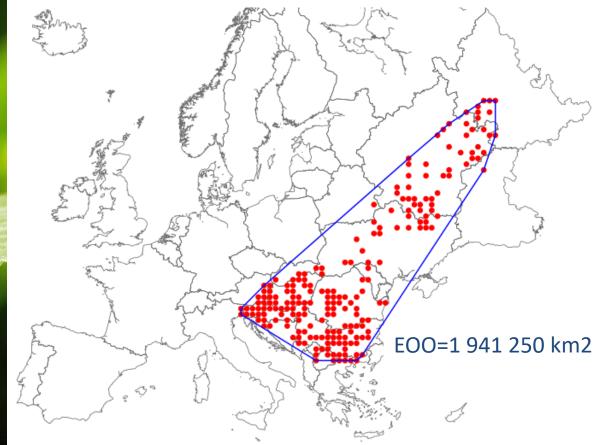

Make rangemap

- Combine the real observations (old and new) on a map
- Discard SMD points >100km from handmade rangemap of 2010 Red List, unless adapted (e.g. *Pieris mannii* and *Cupido argiades*)
- Create an 'alphahull' around the points
- This 'fills' up large areas in E Europe, especially Russia
- New rangemap is built on data and SDM's

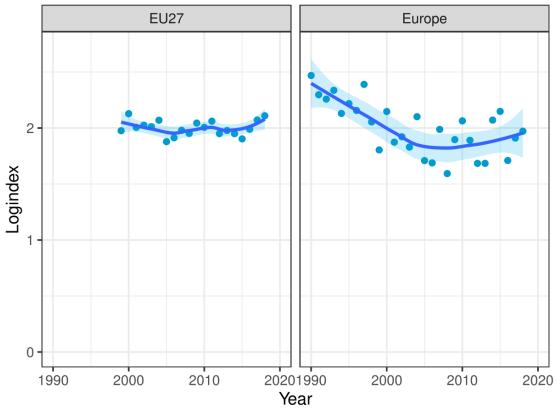


RL 2010 handmade range map

RL 2022 range map


IUCN Red List criteria

- AOO (Area of Occupancy): count area (in km2) of present 2x2km squares
- EOO (Extent of Occurrence): area (in km2) of convex hull around present distribution



Population trend

Boloria euphrosyne

• 10-year trend of ABLE project (2009-2018)

Distribution trend

Ecological Applications, 20(8), 2010, pp. 2157–2169 © 2010 by the Ecological Society of America

Regional avian species declines estimated from volunteer-collected long-term data using List Length Analysis

JUDIT K. SZABO,^{1,4} PETER A. VESK,² PETER W. J. BAXTER,^{1,3} AND HUGH P. POSSINGHAM¹

¹University of Queensland, Centre for Applied Environmental Decision Analysis, School of Biological Sciences, St Lucia, Queensland 4072 Australia ²University of Melbourne, School of Botany, Parkville, Victoria 3010 Australia ³Australian Centre of Excellence for Risk Analysis, University of Melbourne, School of Botany, Parkville, Victoria 3010 Australia

Methods in Ecology and Evolution

Methods in Ecology and Evolution 2014

doi: 10.1111/2041-210X.12254

Statistics for citizen science: extracting signals of change from noisy ecological data

Nick J. B. Isaac¹*, Arco J. van Strien², Tom A. August¹, Marnix P. de Zeeuw² and David B. Roy¹

¹NERC Centre for Ecology & Hydrology, Crowmarsh Gifford, Maclean Building, Wallingford, OX10 8BB, UK; and ²Statistics Netherlands, PO Box 24500, 2490 HA The Hague, The Netherlands

List Length Method susceptable to change in recording intensity

2	Species_name_2019	TN_Red_List_Category_Europe_2010	A Red_List_Category_EU27_2010	aoo_europe	aoo_eu27	eoo_europe	eoo_eu27	dist trend Europe LL Bayes q50 4 ope_Bayes_sign	dist trend LL Bayes EU q50 4 27_Bayes_sign	▲>>eur_change_perc	<pre>eur_change_sign p_eu27_change_perc</pre>	<pre>> 27_change_sign</pre>	Significant?
	Carcharodus alceae	LC	LC	28844	26564	8133128	5788820	1,07	1,08	1,4 si	g 1,39		- Population trend
	Carcharodus baeticus	LC	LC	1036	1036	1873271,5	1873272	0,66 sig	0,66 sig		←	Dis	tribution trend
	Carcharodus floccifera	NT	LC	2816	2492	5765891,5	4326351	0,98	0,98			Sig	nificant?
	Carcharodus lavatherae	NT	NT	2448	2200	2666002	2342917	0,92 sig	0,92 sig	0,66	0,66	5	_
	Carcharodus orientalis Carcharodus stauderi	LC	LC	640	540	883490,5	427414	0,67 sig	0,68 sig	n			
													11500
	Carcharodus tripolinus	LC	LC	192	192	146421,5	146421,5	4,63	4,63				
rstichting	Carterocephalus palaem	LC	LC	18616	13804	8040896	4579298	1,00	1,00	0,8	0,65	5 sig	1
	Carterocephalus silvicol	LC	LC	9268	8568	3558966,5	1537553	0,79 sig	0,52 sig	0,58 si	g 0,58	8 sig	·

A. Population size reduction.	Population reduction (measured o	over the longer of 10 years or 3	3 generations) based on any of A1 to A4
			· · · · · · · · · · · · · · · · · · ·

	Critically Endangered	Endangered	Vulnerable	
A1	≥ 90%	≥ 70%	≥ 50%	
A2, A3 & A4	≥ 80%	≥ 50%	≥ 30%	
 A1 Population reduction observed, estimated, inferred, of the past where the causes of the reduction are clearly understood AND have ceased. A2 Population reduction observed, estimated, inferred, or s past where the causes of reduction may not have ceased. 	reversible AND uspected in the	(b) an in approp (c) a declir	appropriate to the taxon a decline in area of occupancy	
 past where the causes of reduction may not have ceased understood OR may not be reversible. A3 Population reduction projected, inferred or suspected to future (up to a maximum of 100 years) [(a) cannot be used in the subscripts of the sub	o be met in the	any of the (EOO) a	extent of occurrence ind/or habitat quality or potential levels of ation	
A4 An observed, estimated, inferred, projected or suspect reduction where the time period must include both the particular to a max. of 100 years in future), and where the causes of not have ceased OR may not be understood OR may not be	st and the future of reduction may	(e) effects hybridi	of introduced taxa, zation, pathogens, nts, competitors or	

Critically Endangered	Endangered		
	Endangered	Vulnerable	
< 100 km²	< 5,000 km²	< 20,000 km ²	
< 10 km²	< 500 km²	< 2,000 km²	
AND at least 2 of the following 3 conditions:			
= 1	≤ 5	≤ 10	
	< 10 km² = 1	< 10 km ² < 500 km ²	

- (b) Continuing decline observed, estimated, inferred or projected in any of: (i) extent of occurrence; (ii) area of occupancy; (iii) area, extent and/or quality of habitat; (iv) number of locations or subpopulations; (v) number of mature individuals
- (c) Extreme fluctuations in any of: (i) extent of occurrence; (ii) area of occupancy; (iii) number of locations or subpopulations; (iv) number of mature individuals

Red List

- We have all ingredients: European trend (population and distribution trend), AOO, EOO
- We did a preliminary assessment, now we have to discuss with experts, as they have good local knowledge:
 - Is trend correct and real (or a bias)?
 - Number of locations
 - Fragmentation
 - Fluctuations

	Draft	
RL category	Number of species 2022	Number of species 2010
EX	1	
RE		1
CR	1	3
EN	21	12
VU	29	22
NT	20	44
LC	336	349
DD	2	4

Endangered: Gonepteryx maderensis

n Endangered to Least concern: *s xiphia*

From Least concern to Vulnerable? Boloria eunomia

Red List

- We had one workshop on Macaronesian species
- Four workshops planned: Mediterranean, Balkans, Boreal and Central Europe
- But we have to follow the criteria strict
- Review by IUCN office and IUCN SSC Butterfly and Moth SG
- Upload all results to SIS

Chris van Swaay chris.vanswaay@vlinderstichting.nl

De Vlinderstichting Mennonietenweg 10 Postbus 506 6700 AM Wageningen info@vlinderstichting www.vlinderstichting.nl

