Integrating datasets: future plans Emily Dennis

Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL

Ways of monitoring butterflies

Butterfly Transects (e.g. Butterfly Monitoring Schemes)

- Timed Counts
- Sightings data (e.g. Atlas maps, iNaturalist, Observation.org)

How can we integrate datasets?

Which data is best to collect?

Approaches to butterfly monitoring

Transects

- ► The "gold" standard
- Standardized: regular commitment, fixed route
- Involves <u>expert</u> citizen science
- Robust results: Annual indices of relative abundance.
 Sensitive measure of change

Approaches to butterfly monitoring

Timed counts

- Easy to do: suitable weather
- Standardised "reduced effort" method: time fixed, defined area
- Involves <u>expert</u> and non-expert citizen science
- Important for species less suited to transect counts (e.g. tree species, species requiring larval or egg counts)
- Also for remote areas and sites that are difficult to survey
- Public engagement benefits

Example: Big Butterfly Count in the UK

- Citizen-science survey launched in 2010
- Count 18 common species for 15 minutes during bright weather
- Large sample
 - Average ~47,600 participants per year 2013-2015
 - Most counts undertaken in gardens (65%)

big builterily count

Dennis, EB *et al.* (2017) Using citizen science butterfly counts to predict species population trends. *Conservation biology* 31(6): 1350-1361

Comparing UKBMS and WCBS

- Wider countryside butterfly survey stratified random sample of sites (1-km squares)
- 2-4 visits per year
- UKBMS biased towards semi-natural habitat and protected sites
- Widespread species respond similarly across the landscape

Trend from WCBS counts

Roy, DB *et al.* (2015) Comparison of trends in butterfly populations between monitoring schemes. *Journal of Insect Conservation 19*(2): 313-324

Approaches to butterfly monitoring

Sightings (opportunistic data)

- Easy to do: almost no rules and conditions
- Can involve citizen science
- Typically offer high quantity and spatial coverage

1.3 million 'accessible' records, from GBIF, iNaturalist and Observation.org

Trends from opportunistic data

- Sources of bias
 - Change in effort over time
 - Incomplete and selective recording
 - Geographical bias
- Occupancy models account for imperfect detection
- Similar distribution trends from opportunistic and transect data

Distribution trend from transect data

Van Strien, AJ *et al.* (2013) Opportunistic citizen science data of animal species produce reliable estimates of distribution trends if analysed with occupancy models. *Journal of Applied Ecology* 50: 1450-1458

Opportunistic trends can be less sensitive

Van Strien, AJ *et al.* (2019) Over a century of data reveal more than 80% decline in butterflies in the Netherlands. *Biological Conservation* 234: 116-122

Summary of data sources

	BMS Transects	Timed Counts	Opportunistic sightings
Complete list of species sampled	\bigcirc	\bigcirc	?
Repeated throughout the season	\bigcirc	(?)	?
Repeat samples from the same location	\bigcirc	?	?
Sampling effort recorded	\bigcirc	\bigcirc	\bigotimes
Abundance (count) data	\bigcirc	\bigcirc	?
ABLE tools	\bigcirc	\bigcirc	$\left(\times \right)$

Summary of data sources

Combining transects and timed counts

- Requires suitable standardization of the timed counts to produce indices of abundance
- With the aim to combine with transect data
- Timed counts are included with UKBMS for producing trends e.g. for High Brown Fritillary Argynnis adippe
- Need for replication?
- Future task to bring in timed counts to European indicators
- Methods and approaches depend on the end goal

The bigger challenge

- Transect and timed count data can be included with sightings data for producing maps and estimating distribution change
- But can we more formally combine transects and timed counts with opportunistic sightings data?
- Models that integrate different types of population data have been around for a while
- Combining distribution data is a newer challenge

What has been done already?

- Conventional modelling is built around one data type
 - Structured data e.g. transects
 - Larger quantities of unstructured data
- Integrated modelling aims to combine datasets whilst
 - retaining the strengths of each
 - describing the differences in the datasets

Trends in Ecology & Evolution

Review

Data Integration for Large-Scale Models of Species Distributions

Nick J.B. Isaac,^{1,2,*} Marta A. Jarzyna,³ Petr Keil,^{4,5} Lea I. Dambly,^{1,2} Philipp H. Boersch-Supan,^{6,7} Ella Browning,^{2,8} Stephen N. Freeman,¹ Nick Golding,⁹ Gurutzeta Guillera-Arroita,⁹ Peter A. Henrys,¹⁰ Susan Jarvis,¹⁰ José Lahoz-Monfort,⁹ Jörn Pagel,¹¹ Oliver L. Pescott,¹ Reto Schmucki,¹ Emily G. Simmonds,¹² and Robert B. O'Hara¹²

Data merging vs integration

Isaac, NJB *et al.* (2019) Data Integration for Large-Scale Models of Species Distributions. *Trends in Ecology & Evolution.* In Press.

A butterfly example

Methods in Ecology and Evolution

Methods in Ecology and Evolution 2014

doi: 10.1111/2041-210X.12221

C

Quantifying range-wide variation in population trends from local abundance surveys and widespread opportunistic occurrence records

Jörn Pagel^{1,2*}, Barbara J. Anderson^{3,4}, Robert B. O'Hara⁵, Wolfgang Cramer⁶, Richard Fox⁷, Florian Jeltsch¹, David B. Roy⁸, Chris D. Thomas⁴ and Frank M. Schurr^{2,9}

- Model that links spatial population density to transect counts and sightings data
- Estimate detectability-density relationship
- Based on a 10km grid

Isaac, NJB *et al.* (2019) Data Integration for Large-Scale Models of Species Distributions. *Trends in Ecology & Evolution*. In Press.

Example for Gatekeeper Pyronia tithonus

Pagel et al 2014

Upcoming approaches

- Poisson process models
 - Statistical description of how points are distributed in space
 - Rather than grid-based
 - General framework to encompass different data types

Butterfly

Isaac, NJB *et al.* (2019) Data Integration for Large-Scale Models of Species Distributions. *Trends in Ecology & Evolution*. In Press.

Outstanding questions

- When should complex integrated models be used?
- ► What are the potential benefits?
 - Optimizing use of data and effort
 - Increased spatial coverage
 - Improved precision
- How feasible are integrated models in practice?
 - Computationally demanding
 - How to validate and test these models
 - Considering assumptions and biases

Relevance for multi-species indicators

- Indicators can be based upon
 - Transect data/abundance only
 - Separately for abundance and occupancy e.g. UK priority species indicators
 - Combine abundance and occupancy
 - Occupancy as a proxy for abundance
- Assumptions
 - Assume equivalence across the two type of data
 - ▶ Is a 10% change in abundance equivalent to a 10% change in distribution?
 - What is the indicator measuring?

Example: Scottish trends for moths

- 164 species trends for 1990-2014
- Abundance trend: -46%
- ► Distribution trend: +15.8%
- 13 species had significance trends of opposite signs

Dennis, EB *et al.* (2019) Trends and indicators for quantifying moth abundance and occupancy in Scotland. *Journal of Insect Conservation 23*(2): 369-380

Example: comparing butterfly trends

method

2020

2010

Year

abundance

distribution

Distribution trend (opportunistic)

Dennis, EB et al. (2019) Functional data analysis of multi-species abundance and occupancy data sets. Ecological Indicators 104: 156-165

EU butterfly trends

For discussion

- Opportunistic sightings data
 - Benefits for atlases and mapping
 - Cannot assume equivalence with abundance
 - Integrating with count data remains a challenge
- Prioritize transect data where feasible
- But timed count data offer a good alternative
- We want to bring together data from multiple sources to get best assessment of species' status – nice in theory but difficult in practice

