

Larval ecology of Colias palaeno in the N-W Italian Alps

Future of Butterflies in Europe III – 29-31 March 2012 Cristiana Cerrato

Colias palaeno in Italy

Objectives

Describe the role of biotic and abiotic parameters at a spatial and temporal scale relevant for the caterpillars

Survival

Micro-habitat

Micro-climate

Knowledge of the larval needs by target species may be crucial to desing adequate management practice

Habitat quality is often defined on the basis of the requirements of the immature stages, because they are more specific than those of the adults

This is due to the low or absent mobility as well as the longer life time of the immature stages

e.g. Thomas JA (1991) Rare species conservation: case studies of European butterflies. In: Spellerberg IF, Goldsmith FB, Morris MG (eds) The scientific management of temperate communities for conservation. Blackwell Scientific, Oxford, pp 149–197

Influencial factors

Micro-climate

Micro-climatic cooling linked to nitrogen deposition and global warming by advancing plant growth

Optimal temperature and humidity level

Wallisdevries and van Swaay (2006) Global waming and excess nitrogen may induce butterfly decline by microclimatic cooling – Global Change Biology 12: 1620-1626

Physical characteristics of the larval host plant

Bigger leaves and/or bigger plants Linkage to micro-climate

Zalucki, Clarke and Malcom (2002) Ecology and behaviour of first instar larvae - Annual Revue of Entomology 47: 361-393

Influencial factors

Chemical characteristics of the larval host plant

Nitrogen Carbon-based secondary metabolites

Throop and Lerdau (2004) – Effects of nitrogen deposition on insect herbivory: Implications for community and ecosystem processes – Ecosystems 7: 109-133 Fisher and Fiedler, (2000): Response of the copper butterfly Lycaena tityrus to increased leaf nitrogen in natural food plants: evidence against the nitrogen limitation Hypothesis – Oecologia 124: 235-241 Stiling and Cornelissen (2007) – How does elevated carbon-dioxide (CO₂) affect plant-herbivore interactions? – Global Change Biology 13: 1823-1842

Phenological asynchrony

Different responses of different trophic levels

Insect phenology must ensure the temporal match of larvae and larval resources Monovoltine species have a narrow window of opportunity to exploit resources

Singer and Parmesan (2010) Phenological asynchrony between herbivorous insects and their hosts: signal of climate change or pre-existing adaptive strategy? – Phil Trans Royal Society

Where is *Colias palaeno* in the Alps -Sampling design

18 study areas in 2 valleys

Val Formazza and Val Bognanco

Altitudinal gradient

1600-2300 m a.s.l.

- Dry vs Wet sites
- Sistematically searched for eggs/instars
 3 times during the season / 2 hours for visit
- Characterized in term of LHP
- Random squares 1x1 m (15% minimum coverage by *Vaccinium uliginosum*) -<u>Vegetation structure</u> Height of herbaceous and
- shrubs layer LHP description (height, spring growth, number of
- leaves, lenght and widht of the apical leaf)

Where is Colias palaeno the Alps?

id

104 caterpillars in 14 study areas

1. Most sites were occupied (14 vs 4)

2. Low densities

Name: Balma Habitat: Peat bog Altitude: 2000 m Dimension: 1.6 ha Number of pre-immaginal stages: 100

Name: Erioforo Habitat: Humid area Altitude: 2000 m Dimension: 1.2 ha Number of pre-immaginal stages: 90

Larval survival - Study areas

Name: Arpa Habitat: Alpine heathland Altitude: 1900 m Dimension: 0.5 ha Number of pre-immaginal stages: 170

Name: Curzalma Habitat: Alpine heathland Altitude: 2300 m Dimension: 0.3 ha Number of pre-immaginal stages: 80

Larval survival - Study areas

Larval survival - Sampling methods

Micro-climate

Larval Host Plant

Data-logger Micro-habitat structure

Mid August Mid September

Spatial and temporal sampling 10 sampling points per site in Italy

 $\operatorname{Life}_{Life} \operatorname{Life}_{20} \operatorname{Life}_{100} \operatorname{Restriction}_{100} \operatorname{Restr$

Larval survival - Main results

Habitat	Altitude	Egg - I	-	-	Total
Heathland	1900 m	58.6	63.9	54.4	20.4
Humid area	2000 m	44.9	63.2	48.6	13.8
Peat Bog	2000 m	55.0	60.0	39.5	13.0
Heathland	2300 m	48.0	45.5	32.0	7.0

Lower survival rate:

- Higher level of polyphenols and tannins

 Higher level of secondary metabolites/nitrogen ratio

 No differences in primary metabolisms among sites

Larval survival - Main results

Habitat	Altitude	Egg - I	-	-	Total
Heathland	1900 m	58.6	63.9	54.4	20.4
Humid area	2000 m	44.9	63.2	48.6	13.8
Peat Bog	2000 m	55.0	60.0	39.5	13.0
Heathland	2300 m	48.0	45.5	32.0	7.0

Heathland – 1900 m

Peat bog – 2000 m

 Higher survival rate: higher near-ground temperatures

> Friedman ANOVA test, N = 22, df = 3, χ² = 53.073, p < 0.0001

Heathland – 2300 m Humid area – 2300 m _{SE} – 2300 m

To avoid temporal autocorrelation, we used a subsample of sampling period (2/8 - 5/10): every 3 days mesurements (r <0.5)

Egg - first instar: site and vegetation structure

N dead = 165 N survived = 187

Variable	Dead	Survived
Litter coverage (%)	11.3 (0.8)	14.2 (0.9)

Parameters	Estimate	Standard	Wald	р
Interc	0.516	0.557	0.859	0.354
litter coverage	0.034	0.013	6.598	0.010
shrubs	-0.013	0.007	3.910	0.048
Area: heathland (1900 m)	0.636	0.193	10.799	0.001

First - second instar: secondary metabolites

	Estimate	Standard	Wald	р
Interc	0.865	0.290	8.914	0.003
Polyphenols (%) - Seasonal trend	-0.262	0.124	4.437	0.035

Second - third instar: temperature

N dead = 77 N survived = 67

ll - III instar	Mean (SE)
Dead	9.6 (0.1)
Survived	10.1 (0.1)

	Estimate	Standard	Wald	р
Interc	3.997	1.561	6.552	0.010
Temperature	0.393	0.157	6.218	0.013

Colias palaeno - Comparison with german sites

	Germany		Italy		M-W Test		
	Mean	SE	Mean	SE	Z	p-value	
Tannins (First)	11.61	0.24	8.01	0.16	7.455	0.000	Secondary
Polyphenols (First)	15.55	0.29	10.29	0.20	7.589	0.000	metabolites:
Tannins (Second)	12.04	0.25	9.06	0.22	6.560	0.000	trengheigher
Polyphenols (Second)	15.75	0.29	12.51	0.28	6.242	0.000	der Hally
Diff Tannins	0.43	0.14	1.05	0.15	-2.961	0.003	
Diff Polyphenols	0.20	0.17	2.22	0.20	-6.107	0.000]

Colias palaeno - Conclusion

1. Higher density and survival rate near the timberline

Different parameters (vegetation structure, secondary metabolites, temperature) are important for different immature stages

3. Possibility of phenological asynchrony

