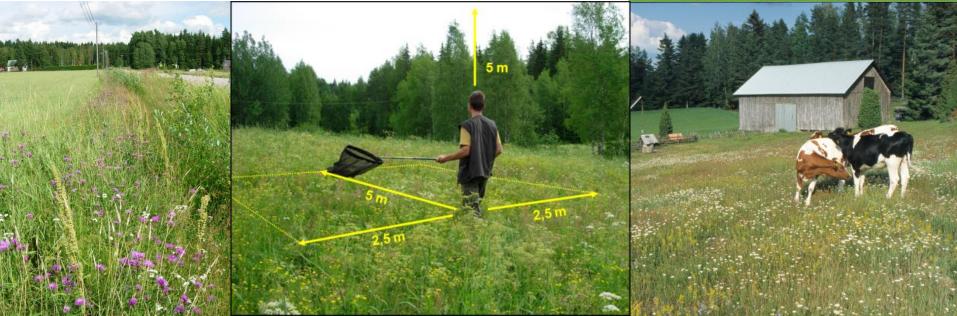
Results from country BMS: Finland

Mikko Kuussaari

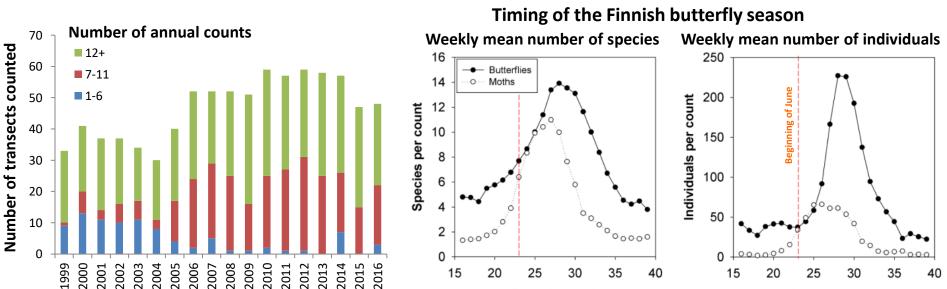
Finnish Environment Institute (SYKE)



"Recording and monitoring butterflies across Europe" Laufen 29 Nov – 2 Dec 2017

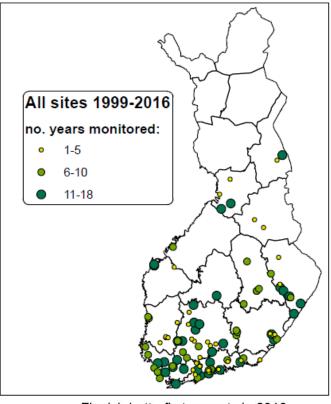
Structure of the talk

- Methods and summary statistics of the Finnish transect BMS 1999-2016
- Butterfly trends based on the transect BMS
- Transect BMS results compared to Finnish butterfly atlas monitoring and moth monitoring schemes

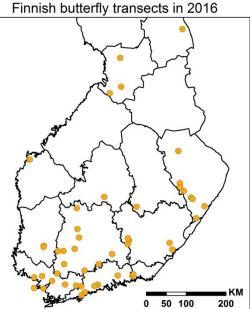


Aims and the methodology used in Finland

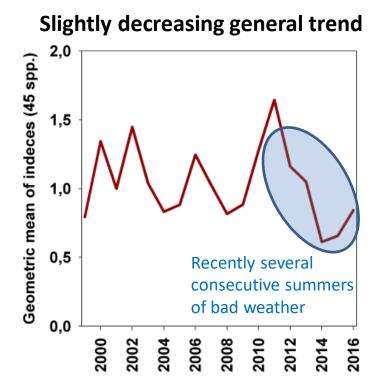
- Scheme started in 1999
- Coordinated by the Finnish Environment Institute (SYKE)
- Focus on agricultural landscapes (monitoring of farmland biodiversity)
- Mostly amateur transects
 - Length and number of sections vary
 - Average transect length 2-3 km
 - Number of counts 10-12 (whole season only 16 weeks; May-August)


Calendar week

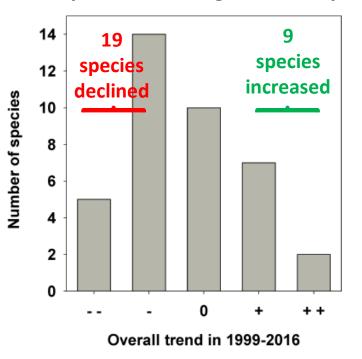

Calendar week


Extent of the Finnish BMS

- Annually 48-60 transects counted
 - Total of 104 transects (1999-2016)
 - 42 transects counted in at least 10 years
 - Lacking data points filled in using TRIM
- Mostly linear habitats (field margins, forest edges and verges of small roads)
- Less than20% of transect subsections in various kinds of grassland habitats

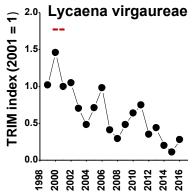

Summary of data collected during 1999-2016

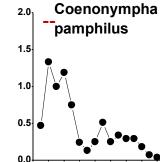
- Butterflies
 - 900 000 individuals and 90 species
 - On average ca. 30 species annually per transect
 - 45 species with calculated trends (TRIM)
- Also other day-active
 - Macrolepidopterans counted on almost 50% of the transects
 - 170 000 individuals
 - 325 species, of which ca. 30-40 common in day-time
 - Calculated population trends for 27 species (TRIM)
- ⇒ Good coverage of common species in field margins, semi-natural grasslands and forest edges
- \Rightarrow Rare and threatened species only occasionally on transects
- \Rightarrow Bog specialists and arctic species not covered by the scheme

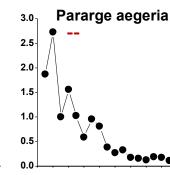

	TOP 15 species	Total counted individuals 1999-2016
1.	Aphantopus hyperantus	207 396
2.	Pieris napi	103 838
3.	Thymelicus lineola	81 184
4.	Gonepteryx rhamni	52 790
5.	Nymphalis urticae	51 382
6.	Nymphalis io	45 343
7.	Brenthis ino	41 851
8.	Boloria selene	33 485
9.	Lycaena virgaureae	25 769
10.	Erebia ligea	24 342
11.	Ochlodes sylvanus	22 006
12.	Callophrys rubi	21 814
13.	Plebeius amandus	16 574
14.	Argynnis adippe	10 964
15.	Coenonympha glycerion	10 814

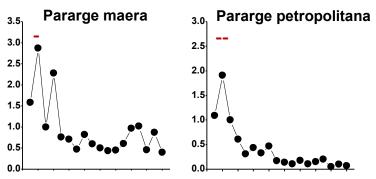
Reporting and general patterns

- Annual reporting in media and in the lepidopterological journal Baptria
- Results not yet published as scientific papers
 - Exceptions collaboration among European schemes
- Annual reporting based on TRIM and simplistic use of data
 - TRIM indices not yet based on annual phenology curves

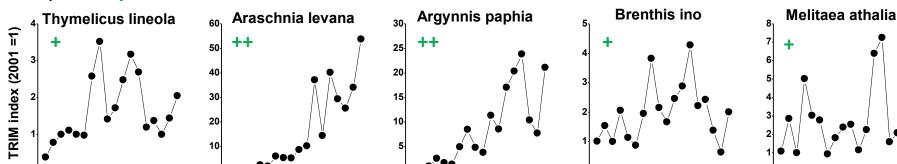

More species with negative than positive trends



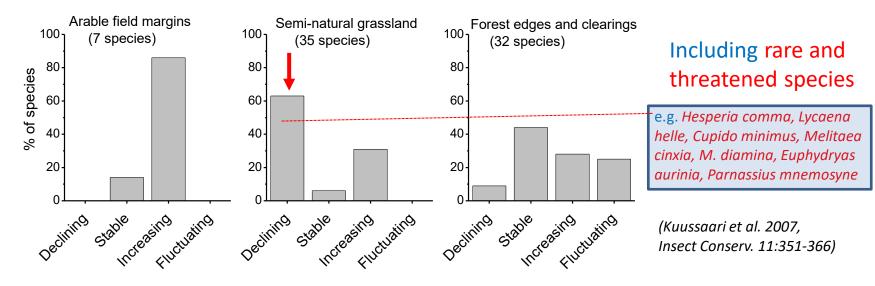


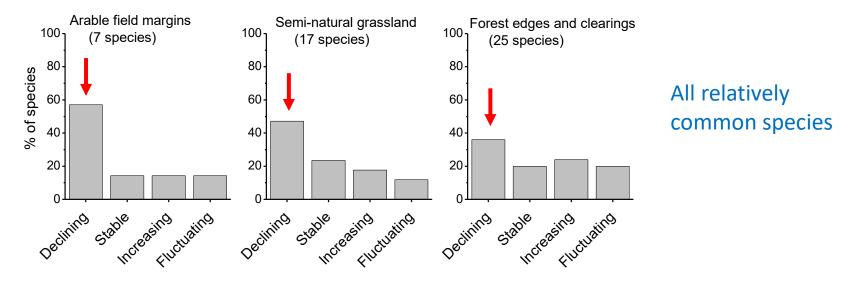

Butterfly population trends (TRIM) 1999-2016

Examples of negative trends

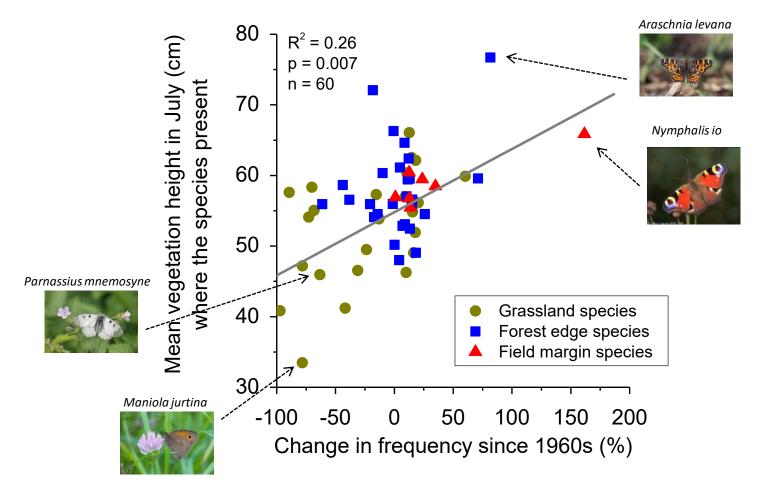


1998 2000 2000 2001 2010 2010 2010 2010 201	Strong decrease	Decrease	Stable	Increase	Strong increase
	Lycaena virgaureae	Carterocephalus silvicola	Aporia crataegi	Thymelicus lineola	Araschnia levana
	Coenonympha pamphilus	Ochlodes sylvanus	Gonepteryx rhamni	Anthocaris cardamines	Argynnis paphia
	Parage aegeria	Leptidea sinapis	Callophrys rubi	Lycaena hippothoe	(Leptidea juvernica)
	Parage petropolitana	Pieris napi	Lycaena phlaeas	Celastrina argiolus	
		Plebeius artaxerxes	Plebeius argus	Plebeius idas	
45 species with		Polyommatus amandus	Polyommatus semiargus	Brenthis ino	++
calculated		Polyommatus icarus	Nymphalis antiopa	Melitaea athalia	GERESI MINED
Calculated		Nymphalis urticae	Nymphalis io		
TRIM trends		Nymphalis c-album	Argynnis aglaja		
Internas		Argynnis adippe	Boloria selene		
		Boloria euphrosyne			
	•	Erebia ligea			
		Aphantopus hyperantus			Sector of
	1	Coenonympha glycerion			
	9) Esko V / Marin 3 7, 1936	Pararge maera			
		rarargemacra			

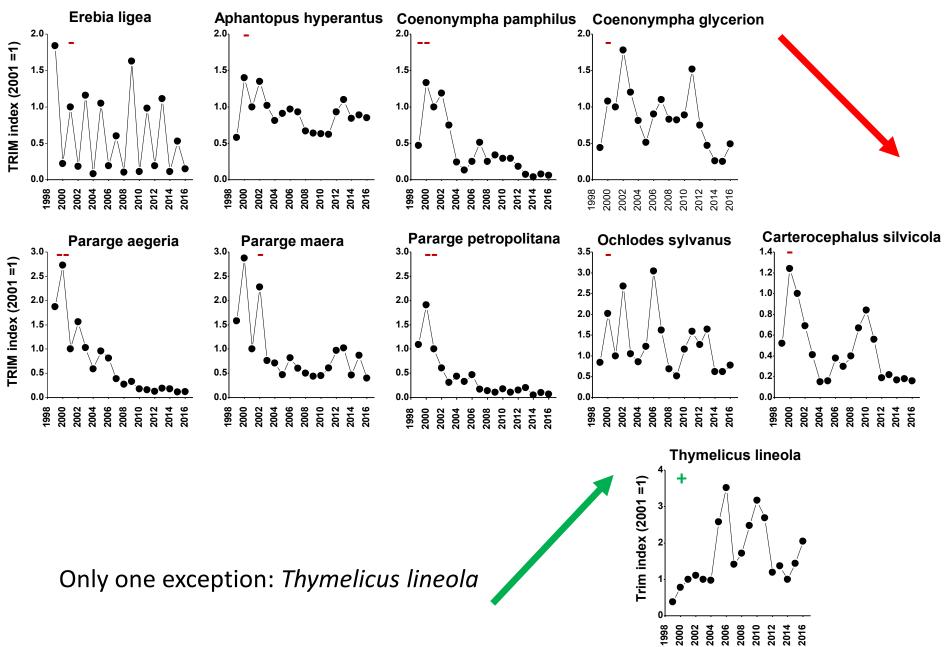

Examples of **positive trends**


0†

Observed trends in relation to habitat preferences

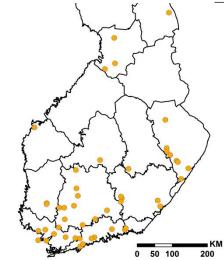

Based on atlas data (10 km grid square occupancy) 1950-2000 (all the 74 species)

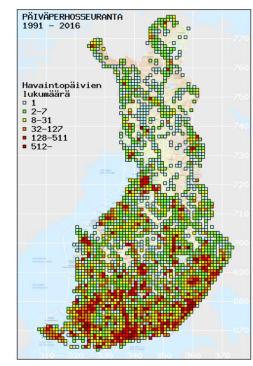
Based on transect counts (i.e. abundance) 1999-2016 (49 species with sufficient data)



Population trend increases with preferred vegetation height

- Species preferring lower vegetation have decreased presumably due to loss of suitable habitat
- Habitat loss caused by
 - Agricultural changes, e.g. ceasing of grazing in natural pastures
 - Increasing nitrogen deposition


Almost all grass-feeding species have declined


Similar annual changes in abundance based on transect and atlas monitoring schemes

40 998-2008 (% $R^2 = 0,51$ Change in species abundance p < 0.00120 *n* = 50 -20 $\overline{}$ in the Atlas scheme -40 -60 -80 -100 -100 -80 -60 -40 -20 20 0 40 Change in species abundance in transects 1999-2008 (% based TRIM)

Transect monitoring

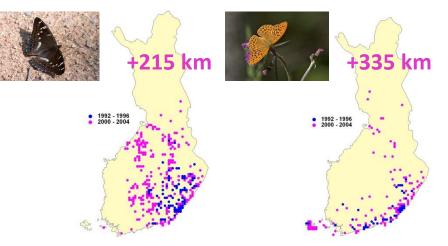
Atlas monitoring (NAFI)

Annual atlas scheme useful in detecting changes in distribution areas

Changing northern range margin due to warming climate

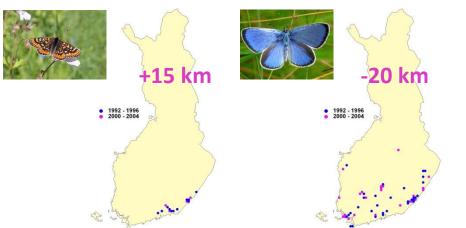
 For each species a comparison of 10 northernmost observation grid squares between two time periods: 1992-96 vs. 2000-2004

Results

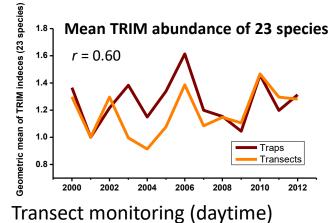

- Much variation in observed range shifts between species
- Systematic differences between species trait groups:
 - Largest range shifts in species preferring forest edges (mean + 85 km)
 - Smallest range shifts in threatened species (mean 2 km)

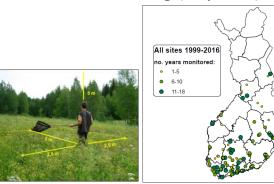
Observed northward expansion in 8 years

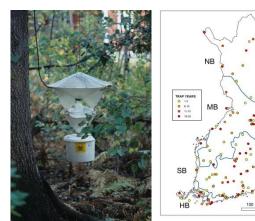
Forest edge species: mean = + 85 km

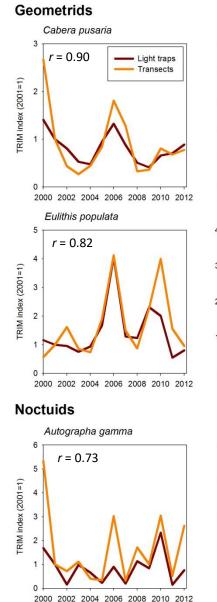

Limenitis populi Ai

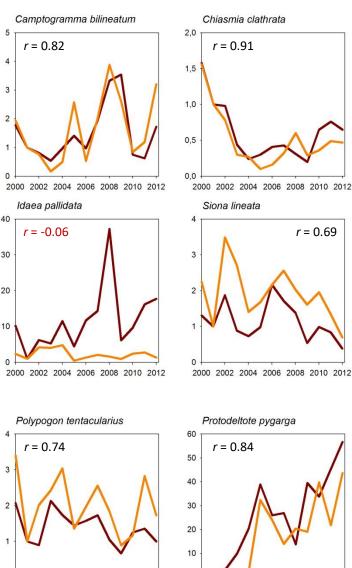
Argynnis paphia


Threatened species: mean = - 2 km


Euphydryas aurinia Glaucopsyche alexis


Pöyry, Luoto, Heikkinen, Kuussaari & Saarinen 2009, Global Change Biology 15:742-743


Most annual moth species abundance estimates correlate well between two Finnish schemes: the transect scheme and the moth monitoring scheme based on light traps



Light trap monitoring (nighttime)

J. Pöyry, J. Heliölä & M. Kuussaari, unpublished

2000 2002 2004 2006 2008 2010 2012

2000 2002 2004 2006 2008 2010 2012

Summary 1/2

- Finnish scheme has been running already for 19 years
 - Typically >50 transects counted annually
 - Good monitoring data on ca 50 butterfly and ca 30 day-active moth species
- In butterflies there has been a slightly negative trend in abundance
 - 19 species significantly declining and 9 species increasing

Summary 2/2

The 19 years of data of the Finnish BMS

- Enable interesting analyses of population dynamics and trends in Finland
- Provide a useful set of northern data points for various European scale comparisons

In the next few years

 We hope to produce the first scientific papers from the Finnish scheme

